Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Polymers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341707

ABSTRACT

The outbreak of COVID-19 has already generated a huge societal, economic and political losses worldwide. The present study aims to investigate the antiviral activity of Poly(hexamethylene biguanide) hydrochloride (PHMB) treated fabric against COVID-19 by using the surrogate Feline coronavirus. The antiviral analysis indicated that up to 94% of coronavirus was killed after contacting the CVC fabric treated with PHMB for 2 h, which suggests that PHMB treated fabric could be used for developing protective clothing and beddings with antiviral activity against coronavirus and can play a role in fighting the transmission of COVID-19 in the high-risk places.

2.
Antibiotics (Basel) ; 10(7)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1295741

ABSTRACT

COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.

3.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1282537

ABSTRACT

Antimicrobial resistance is a major healthcare threat globally. Xanthines, including caffeine and pentoxifylline, are attractive candidates for drug repurposing, given their well-established safety and pharmacological profiles. This study aimed to analyze potential interactions between xanthines and aromatic antibiotics (i.e., tetracycline and ciprofloxacin), and their impact on antibiotic antibacterial activity. UV-vis spectroscopy, statistical-thermodynamical modeling, and isothermal titration calorimetry were used to quantitatively evaluate xanthine-antibiotic interactions. The antibacterial profiles of xanthines, and xanthine-antibiotic mixtures, towards important human pathogens Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Enterobacter cloacae were examined. Caffeine and pentoxifylline directly interact with ciprofloxacin and tetracycline, with neighborhood association constant values of 15.8-45.6 M-1 and enthalpy change values up to -4 kJ·M-1. Caffeine, used in mixtures with tested antibiotics, enhanced their antibacterial activity in most pathogens tested. However, antagonistic effects of caffeine were also observed, but only with ciprofloxacin toward Gram-positive pathogens. Xanthines interact with aromatic antibiotics at the molecular and in vitro antibacterial activity level. Given considerable exposure to caffeine and pentoxifylline, these interactions might be relevant for the effectiveness of antibacterial pharmacotherapy, and may help to identify optimal treatment regimens in the era of multidrug resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Caffeine/pharmacology , Heterocyclic Compounds/chemistry , Pentoxifylline/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Caffeine/chemistry , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/pharmacology , Drug Interactions , Microbial Sensitivity Tests , Pentoxifylline/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology
4.
ACS Appl Bio Mater ; 4(5): 3937-3961, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1026805

ABSTRACT

Bacterial infection is a universal threat to public health, which not only causes many serious diseases but also exacerbates the condition of the patients of cancer, pandemic diseases, e.g., COVID-19, and so on. Antibiotic therapy has been used to be an effective way for common bacterial disinfection. However, due to the misuse and abuse of antibiotics, more and more antibiotic-resistant bacteria have emerged as fatal threats to human beings. At present, more than 700,000 patients die every year with bacterial infections because of the lack of effective treatment. It is frustrating that the pace of development of antibiotics lags far behind that of bacterial resistance, with an estimation of 10 million deaths per year from bacterial infections after 2050. Facing such a rigorous challenge, approaches for bacterial disinfection are urgently demanded. The recently developed near-infrared (NIR) light-irradiation-based bacterial disinfection is highly promising to shatter bacterial resistance by employing NIR light-responsive materials as mediums to generate antibacterial factors such as heat, reactive oxygen species (ROS), and so on. This treatment approach is proved to be a potent candidate to accurately realize spatiotemporal control, while effectively eradicating multidrug-resistant bacteria and inhibiting antibiotic resistance. Herein, we summarize the latest progress of NIR light-based bacterial disinfection. Ultimately, current challenges and perspectives in this field are discussed.


Subject(s)
Bacteria/radiation effects , Disinfection/methods , Infrared Rays , Nanomedicine/trends , Bacterial Infections/prevention & control , Humans , Photochemotherapy , Photothermal Therapy
SELECTION OF CITATIONS
SEARCH DETAIL